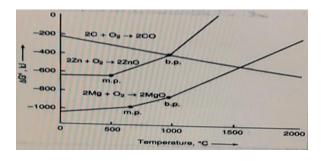
KATWA COLLEGE

4^{th} SEMESTER INTERNAL ASSESSMENT EXAMINATION, 2021

SUBJECT: CHEMISTRY (Hons.)

COURSE CODE: CC-9


COURSE TITLE: Inorganic Chemistry-III (Theo)

DATE: 06.07.2021 FULL MARKS: 10 TIME: 1 HOUR 30 MINUTES

Answer any five questions:

5 X 2 = 10

Q1.: Considering the Ellingham diagram and answer the following questions:

- (i) At what temperature zinc and carbon have equal affinity for oxygen?
- (ii) Which of the following reactions will be spontaneous in maximum extent at 1100°C?

(a)
$$MgO + C \rightarrow Mg + CO$$

(b)
$$ZnO + C \rightarrow Zn + CO$$

(c)
$$MgO + Zn \rightarrow Mg + ZnO$$

(d)
$$ZnO + Mg \rightarrow MgO + Zn$$

- Q2.: What are silicon, silicones, silanes and silicates?
- Q3.: How many five and six member rings are there in C_{60} and C_{70} ?
- Q4.: Why helium is often found in beryl?
- Q5.: "Interhalogen compounds have even number of halogen atoms, but polyhalides have odd number of halogen atoms"-comment.
- Q6.: One red coloured complex(\mathbf{A}) slowly transforms into another yellow coloured complex(\mathbf{B}) on long standing. The analysis shows both A and B have the composition- Co:NH₃:Cl:NO₂ = 1:5:2:1. One equivalent of each complex produces two equivalent of AgCl on treatment with AgNO₃. Write the possible formula of A and B (no explanation needed). What type of isomerisms exists between A and B?
- Q7.: Arrange the following complexes in order of their molar conductivities with brief explanation:

 $[Pt(NH_3)_3Cl_3]Cl, [Pt(NH_3)_6]Cl_4, K_2[PtCl_6]$